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1 Introduction

In bachelor courses of thermodynamics, systems are mostly considered to be homogeneous. However, spatially inhomogeneous fea-
tures are omnipresent in everyday life. Examples comprise systems near walls, or in complex environments, but also non-equilibrium
phenomena like pattern formation which can occur in reaction-diffusion systems. Another example are mixtures of non-reacting
species that undergo phase separation. The latter can be easily seen when mixing oil and water, showing phase separation and
dynamic coarsening of small droplets of oil in water until there are only two phases left. In this work, we will focus on components
that do not react with each other and which show a time-independent composition.

For mixtures of two (or more) components that do not react with each other, the thermodynamics of mixing and unmixing can give
important insights into the final state of the system. The Flory-Huggins theory, which takes into account the combinatorial entropy
as well as the interaction energy of the different components, can predict whether the system stays in a homogeneous form or phase
separates into two phases. However, the theory does not give any insights into the spatiotemporal structures that emerge when
the individual species unmix, i.e., the timescale of the phase separation can range from ms or s in liquid-liquid phase separation
to days, weeks and longer for polymer blends or colloidal solutions. The Cahn-Hilliard equation, on the other hand, provides a
continuous description of the phase separation dynamics. In particular, it can model e.g. the process of nucleation and growth, and
the coarsening dynamics of clusters of the different phases. We can therefore investigate the dynamics of phase separation or mixing
qualitatively by looking at simulation movies and quantitatively by studying properties such as the growth rate of clusters with time
using the Cahn-Hilliard model.

In this simulation lab-work, we will investigate phase separation of two-component systems described by the Cahn-Hilliard equa-
tion. Specifically, we will combine elements from the Flory-Huggins theory and the Cahn-Hillard model to construct the phase
diagram analytically, with the help of linear stability analysis. Next, we will verify the results and investigate the dynamics of
mixing and unmixing using numerical simulations. In the following section, we first “derive” the Cahn-Hilliard equation from the
Landau mean-field theory and the free energy functional and introduce the concepts needed to investigate the Cahn-Hilliard model
analytically and numerically.

2 Theoretical Background

In the following sections we will start with the thermodynamics of equilibrium phase separation with the help of the Flory-Huggins
theory. The concepts of spinodal and binodal phase separation will be introduced. After that, we will approach the kinetics of
phase separation by deriving the Cahn-Hilliard equation starting from the Landau mean field theory. For deeper dive into the topics,
literature like “Polymer physics” by Rubinstein [1], “‘Soft Matter Physics’” by Doi [2] for Flory-Huggins and “Soft condensed matter”
by Jones [3] or “The Physics of Phase Transitions” by Papon et al. [4] for the Cahn-Hilliard equation can be consulted. For linear
stability analysis, “Pattern formation and dynamics in nonequilibrium systems” by Cross and Greenside [5] or “Nonlinear Dynamics
and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering” by Strogatz [6] can be used.

2.1 Equilibrium Phase Separation

To get a thermodynamic understanding of phase separation in a system of two components, we employ the Flory-Huggins theory,
developed independently by Paul Flory and Maurice Huggins in the 1940s. We define the system as a lattice consisting of N0 sites
of equal volume v0, comprising NA and NB particles of species A and B, respectively, each of which can occupy a single lattice
site. Considering that NA atoms have the option to occupy one of N0 available positions, the concentration of the atoms is given by
φA = NA

N0
. The entropy

S = kB lnW

of the lattice gas can be expressed with the number of configurations

W =
N0!

NA!(N0 −NA)!
=

N0!

NA!NB !

Using Stirling’s approximation, ln(N !) ≈ N ln(N)−N , we obtain

S = const−kBN0 [(1− φA) ln(1− φA) + φA lnφA] (1)

or
S = S0−kB [NB lnφB +NA lnφA] ,

where NB = N0 − NA and φB = 1 − φA represent the number and concentration of B atoms. Such a binary system, where NA

sites contain atoms of type A and NB sites are occupied by atoms of type B, can be seen in Figure 1. In equation (1), the two
terms are translational entropies of the atoms of the respective types. However, when considering two types of atoms in a lattice, we
must also account for the interaction between atoms at adjacent positions. Described by the Bragg-Williams model, this interaction
assesses the energy associated with pairs of neighboring sites, contingent upon whether they are occupied by A-atoms, B-atoms, or a
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Figure 1: Schematic representation of the Flory-Huggins theory for a binary mixture of A and B species. An atom of each species
(denoted by black and white filled circles for A and B, respectively) can occupy only one of the 64 lattice sites. [7]

combination thereof. Denoting the interaction energy of these pairs as εAA, εAB , and εBB respectively, the system’s internal energy
can be expressed as follows:

U = εAANAA + εABNAB + εBBNBB .

Consider a lattice with a coordination number C (i.e., each site is directly connected/bonded to C adjacent sites), consisting of
NA = φN0 A-atoms and NB = (1−φ)N0 B-atoms. In a large lattice comprising N sites, the total number of bonds will be C ·N0/2
since each bond originates from one of the two neighboring sites and is counted twice. We disregard the variation in bond count at
boundary sites. Let’s explore A atoms with all of their C ·NA bonds, representing either AB or AA pairs of nearest neighbors.

C ·NA = 2NAA +NAB .

We have a factor of 2 because an AA-bond is counted twice in C ·NA, starting with each of its ends. With the same line of logic:

C ·NB = 2NBB +NAB .

Using these last two we can rewrite U as

U = U0 +

(︃
εAB − 1

2
εAA − 1

2
εBB

)︃
NAB ,

where U0 = (εAANA/2 + εBBNB/2)C. Assuming that each of the end in an AB bond is connected to A-sites with probability
φA = φ and to B-sites with probability φB = 1 − φ and given that there are C next neighbors per site in our lattice, we deduce
NAB = N0Cφ(1− φ). Consequently, the total free energy is

F = U − TS

= F0 +N0
C

2

(︃
εAB − 1

2
εAA − 1

2
εBB

)︃
φ(1− φ) + kBTN0 [(1− φ) ln(1− φ) + φ lnφ] ,

where F0 = φFA + (1 − φ)FB represents the free energy of a system with NA = φN0 sites filled by A and NB = (1 − φ)N0 sites
filled by B, neglecting their interaction. Therefore, F0 is the free energy of the pure materials before mixing, with the additional
term describing changes due to mixing. The Flory-Huggins parameter

χ =
1

kBT

C

2

(︄
εAB − εAA + εBB

2

)︄
(2)

is expressed in units of kBT , where kB is the Boltzmann constant and T is the temperature, It follows that

F

N0kBT
= χφ(1− φ) + (1− φ) ln(1− φ) + φ lnφ. (3)
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The free energy of mixing has three terms. The first term is related to the interaction energy and can be positive, zero, or negative
depending on the interaction parameter χ, which in turn has energetic origins. The last two terms, on the other hand, are related
to entropy and always promote mixing. If there is a net attraction between the two species, χ > 0, and εAB > εAA+εBB

2
, which

promotes a tendency towards phase separation of the system. For χ < 0, a single-phase mixture is favorable for all compositions.
For the case χ = 0 the equation describes an ideal mixture which is always homogeneous due to the mixing entropy always being
positive.

2.1.1 Spinodal

By considering the temperature dependence of the free energy of mixing, a phase diagram can be constructed to summarize the
different possible phases of the system. The diagram shows regions of stability, instability, and metastability. It plays a crucial role
in the phase diagram of a binary mixture. The spinodal curve marks the boundary of stability for a single-phase region. Any point
that falls within the region which is spanned by the spinodal curve represents an unstable region where fluctuations in composition
will lead to spontaneous phase separation (cf. Figure 2). The spinodal curve is determined by finding the points where the second
derivative of the free energy with respect to composition becomes zero

∂2F (φ, χ)

∂φ2
= 0.

These points are where the free energy has inflection points, indicating instability that leads to phase separation. Using Equation (3)
we can calculate the spinodal interaction parameter χs as

χs =
1

2

(︂ 1
φ
+

1

1− φ

)︂
.

The lowest point on the (φ, χ)-plane, known as the critical point, corresponds to the values of parameters where the instability of
the single phase solution first emerges with increasing χ (decreasing temperature). This critical point is determined by

∂χ(φ)

∂φ
= 0,

which gives us φc = 1/2 and χc = 2.

Figure 2: Free energy (upper graph) and phase diagram with the calculated spinodal (lower graph: dashed) and binodal (lower
graph: solid) curves. [1]
Points that falls within the regionwhich is spanned by the spinodal curve represents an unstable regionwhere fluctuations
in composition will lead to spontaneous phase separation. In the region which is spanned between the spinodal and
binodal, the system is metastable and will phase separate only for large enough fluctuations. Outside of the region
spanned by the binodal, the system will always mix homogeneously.
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2.1.2 Binodal

According to Gibbs’ phase rule, a two-component system can have a maximum of two coexisting liquid phases. Thus, if phase
separation occurs, two different phases with varying concentrations will appear: a A-rich phase and a A-poor phase (or B-poor/B-rich
respectively). The initial state of a system in phase separation is crucial as it determines the initial distribution of the concentration
field, which influences how the system will evolve. In binodal phase separation, the initial state involves a homogeneous or slightly
perturbed concentration profile. As the value of χ increases from below to above the spinodal, there is an inevitable spinodal
decomposition where the free energy lowers with any small change in concentration, consistent with the overall conservation of the
number of monomers. The coexistence curve represents the situation where small local concentration changes lead to an increase in
the solution’s free energy but where, for some finite concentration changes, an energetically more favorable phase-separated state
exists. We can calculate the binodal curve using the derivative of the free energy with respect to φ. The binodal χb (solid line in the
bottom part of Figure 2 of a symmetric blend) is given as a solution of

∂F (φ, χ)

∂φ
= 0

resulting in
χb =

1

2φ− 1
ln( φ

1− φ
).

It’s worth noting that the spinodal and binodal curves for any binary mixture meet at the critical point. When the interaction
parameter χ is below the critical point (for χ < χc), the homogeneous mixture is stable for any value of 0 ≤ φ ≤ 1. But, when
the interaction parameter is higher (for χ > χc), there exists a metastable region between the spinodal and binodal. Here the
equilibrium state corresponds to two phases with compositions φ′ and φ′′ located on the two branches of the coexistence curve at
the same value of χ (c.f. Figure 2).

2.1.3 Expansion of the Free Energy

We can connect the Flory-Huggins free energy to the Cahn-Hilliard equation by expanding the free energy around the critical point
(χ, φ) = (2, 1/2). Let’s consider the special case of a 1:1 mixture for which the uniform phase is φ = φ0 = 1/2 and expand F around
φ = φ0 = 1/2 up to the fourth order:

F = kBTN

[︄
χ

4
− ln 2 + (2− χ)

(︃
φ− 1

2

)︃2

+
4

3

(︃
φ− 1

2

)︃4
]︄
. (4)

Here, the first two terms are irrelevant for the phase separation since they are constant.

2.2 Spatial Dynamics

2.2.1 Landau Mean-Field Theory and Free Energy

Landau theory postulates that a system evolves such that it minimizes the free energy functional

F [φ(x⃗)] =

∫︂
V

f(φ(x⃗),∇φ(x⃗))dx⃗

where φ(x⃗) is some order parameter field near the critical point. The general philosophy for constructing f is to write down all terms
which are allowed by symmetry (up to some suitable order in the distance of the order parameter from the critical point) [8].

By considering the free energy density to have the shape f = fhom + finhom, we can expand the homogenous part fhom in φ around
the critical point φ0 to the fourth order a

2
φ2+ b

4
φ4. Here, the linear term is neglected because it is irrelevant for the result. The cubic

term is typically relevant, but it adds much algebra and not much physics. We neglect it for simplicity in this work. The interfaces’
free energy cost increases with the gradient of the order parameter, hence we account for such a change in the inhomogeneous part
by considering its leading order finhom = κ

2
(∇φ)2 Overall, we have

f =

[︃
a

2
φ2 +

b

4
φ4 +

κ

2
(∇φ)2

]︃
. (5)

A link to the free energy from the Flory-Huggins theory can be made clear by starting from Eq. (4) and using φ̃ = 2φ− 1, where
φ is the ratio from the previous section. This yields

F = kBTN

[︃
(2− χ)φ̃

2
+

4

3
φ̃
4
]︃
,

which has the same first two terms as the free energy in Equation (5). The last term, which is a penalty due to the gradient of the
order parameter (effectively an interface-penalty), on the other hand, cannot be recovered since the Flory-Huggins theory does not
consider spatially inhomogeneous systems. We can also identify a = 2kBTN and b = 16kBTN/3.
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2.2.2 Conserved Dynamics (Mean-Field Model B)

We will investigate systems with non-reacting components. More importantly, we consider a closed system where the total mass
(and concentration) are conserved. In order to get to a conserved system from the general Landau mean field theory, we consider
the so-called mean-field model B.

1. A consequence of the conservation of φ is that the dynamics of φ has to obey a continuity equation:

φ̇(x⃗, t) +∇ · j⃗(x⃗, t) = 0,

where j⃗ is some flux describing the net motion of the solutes.

2. A net motion (flux) of the order parameter field should occur only in regions where δF/δφ ̸= 0, i.e. in regions where the
system is not locally in equilibrium. The simplest form of the flux is then j⃗ = −M∇δF/δφ whereM is some coefficient, called
mobility (and which has the dimension of a diffusion coefficient).

Putting all these things together we obtain mean-field Model B:

φ̇(x⃗, t) = ∇ ·
[︃
M∇δF [φ(x⃗, t)]

δφ

]︃

2.2.3 Cahn-Hilliard Equation

To obtain a model for the dynamics of phase separation, we consider the conservative dynamics of the density and use the model B
with the free energy functional in Equation 5 to obtain the Cahn-Hilliard (CH) equation [9]:

φ̇(x⃗, t) = ∇ ·
[︁
M∇

(︁
aφ+ bφ3 − κ∇2φ

)︁]︁
(6)

The Cahn-Hilliard equation is a nonlinear partial differential equation and allows us to describe dynamics of the conserved order
parameter φ. For a binary mixture, this order parameter is related to local concentrations of the two components of the binary
mixture, as we will discuss later.

We can non-dimensionalize the equation by choosing appropriate units of length and time. Let x⃗ = xux⃗
′ and t = tut

′, where
the primes denote dimensionless quantitites, and xu and tu denote the length and time units. Hence ∇ = 1

xu
∇′ and ∂

∂t
= 1

tu

∂
∂t′ .

Substituting these in Equation (6) and rearranging, we obtain

∂φ

∂t′
= ∇′ ·

[︃
∇′
(︃
Mtua

x2
u

φ+
Mtub

x2
u

φ3 − Mtuκ

x4
u

∇′2φ

)︃]︃
.

Since there are two unknowns: xu and tu, we can choose two of the three coefficients in the previous equation to be unity. Choosing
Mtub
x2
u

= 1 and Mtuκ
x4
u

= 1, we get xu =
√︁

κ/b and tu = κ/Mb2. Hence, we can write down the equation in terms of the single
dimensionless parameter α = Mtua

x2
u

= a
b
as

φ̇(x⃗, t) = ∇ ·
[︁
∇(αφ+ φ3 −∇2φ)

]︁
(7)

which is the dimensionless form of the Cahn-Hilliard equation (we have dropped the primes for simplicity).

2.3 Linear Stability Analysis

To predict whether a binary mixture will phase separate following the Cahn-Hilliard equation, depending on their initial concen-
tration and other control parameters, we need to perform a linear stability analysis. For a detailed (and accessible) introduction to
linear stability analysis, we can recommend the introductory chapters of the book by Cross and Greenside [5].

In this section, we do not perform the linear stability analysis of the Cahn-Hillard equation (which is left as a task for later).
To illustrate how linear stability analysis works, we exemplarly perform it for a different equation, namely the Swift-Hohenberg
equation. The Swift–Hohenberg equation is a one-dimensional equation for a single field u(x, t) in a spatial domain 0 ≤ x ≤ L at
time t. The equation is given by

r∂tu(x, t) = (r − 1)u− 2∂2
xu− ∂4

xu− u3, (8)

where r is a control parameter. As you can easily verify, this equation has a simple uniform solution: ub(x, t) = 0. As the parameter r
is varied, we would like to find the critical parameter rc when this uniform state becomes linearly unstable, i.e., when the magnitude
of an arbitrarily small perturbation about the ‘base state’ ub(x, t) = 0 begins to grow exponentially with time. To do this, we consider
an arbitrary nearby solution u(x, t) = ub(x, t)+up(x, t), with up(x, t) being a small perturbation field, and ask whether up(x, t) will
grow in magnitude over time. Substituting this in Eq. (8), we have

∂tub + ∂tup =
(︁
r − 1− 2∂2

x − ∂4
x − 3u2

b
)︁
up.
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Since up is sufficiently small, we have kept only the terms linear in up and ignored the terms with u2
p and u3

p. Since ub(x, t) = 0 and
∂tub(x, t) = 0, the perturbation field evolves according to

∂tup =
(︁
r − 1− 2∂2

x − ∂4
x

)︁
up. (9)

This is a linear differential equation with constant coefficients, we can write a particular solution

up(x, t) = Aeσteiqx,

where σ (which is a complex number) is the growth rate of the perturbation field and q (which is real) is the wave number. Substi-
tuting this particular solution in Eq. (9), we get the wave-number-dependent growth rate

σq = r −
(︁
q2 − 1

)︁2
, (10)

which says that a small-amplitude, spatially periodic perturbation with wave number q (about the base solution ub = 0) will grow
or decay exponentially in time with a growth rate σq that depends on q. Since Eq. (9) is linear, a general solution can be obtained
as a superposition of the particular solutions:

up(x, t) =
∑︂
q

cqe
σqteiqx. (11)

The base state ub = 0 is therefore linearly stable if each exponential in this sum decays in the long time limit t → ∞. This will be
true if the maximum real part of all the growth rates is negative:

max
q

Reσq < 0,

which can only happen if r < 0 as you can see from Eq. (10). Hence, the uniform state ub = 0 is linearly stable when the parameter
r < 0 and is linearly unstable when r > 0, so the critical parameter value for linear instability is rc = 0. The fastest-growing mode
occurs at wave number q = qc at which Reσq has its maximum. This can be obtained by solving dσq

dq
|q=qc = 0 and d2σq

dq2
|q=qc < 0

using the expression for σq from Eq. (10), which gives qc = 1. Here, the critical wave number qc is independent of r, but, in general,
it can depend on the control parameters of the system. Figure 3 shows the dependence of the growth rate on the wave number as we
vary the control parameter r. For r = −0.2, σq is negative everywhere, as expected. For r = 0.2, we obtain a band of wave numbers
0.75 < q < 1.2 centered around qc = 1 whose corresponding Fourier modes will grow since σq > 0 for these values of q. This means
that if the initial perturbation up(x, t = 0) is a small-amplitude noise such that all the Fourier coefficients in Eq. (11) are non-zero
but with tiny amplitude, then a cellular pattern will start to grow out of this noise since the Fourier coefficients with wave numbers
close to qc = 1 will grow in magnitude. This is the onset of pattern formation and one can expect some cellular structure emerging
with a characteristic wavelength 2π/qc.

Figure 3: Growth rate σq as a function of wave number q for 1D Swift–Hohenberg equation [5]. Three curves are shown for different
values of the parameter r: r = −0.2 (light gray), r = 0 (black), and r = 0.2 (dark gray). These correspond to a stable,
marginally unstable, and unstable base state. The critical parameter value is rc = 0 and the critical wave number is
qc = 1.

3 Observables

A plethora of observables can be used to investigate the Cahn-Hilliard equation. In this section we will focus on the structure factor
which also allows us to investigate the coarsening dynamics with the help of the the domain length and growth rate.
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3.1 Structure Factor

As phase separation begins, domains of distinct phases start to form. Over time, these domains grow to minimize the interfacial
energy. In the realm of condensed matter physics, the structure factor emerges as a vital tool for comprehending the organization
of these domains. By providing insights into the spatial distribution and correlations among them, the structure factor enhances our
understanding of the behavior and characteristics of the phase-separated system.

For a continuum field, the two-dimensional structure factor can be computed directly from the numerical Fourier transform of φ,
as detailed in references such as [10, 11]:

S(q⃗, t) = ⟨φ(q⃗, t)φ(−q⃗, t)⟩ =
⟨︁
|φ(q⃗, t)|2

⟩︁
. (12)

Here, φ(q⃗, t) represents the Fourier transform of the order parameter field φ(r⃗, t), providing information about the spatial distribu-
tion of fluctuations in the order parameter field at a specific wave vector q⃗. To derive the isotropic structure factor S(q, t) at q = |q⃗|,
we average the resulting two-dimensional structure factor over all possible directions, employing polar coordinates:

S(q, t) =
1

2π

∫︂ 2π

0

dϕS((q cos(ϕ), q sin(ϕ)), t). (13)

3.2 Growth Rate

During the coarsening process, larger domains grow at the expense of smaller ones, triggering a redistribution of material known
as Ostwald ripening. It is well-established that the average domain size adheres to the Lifshitz-Slyozov law, exhibiting growth
proportional to the one-third power of time [3, 12]. As time progresses, a characteristic length scale emerges to govern the average
domain length — a droplet of size L(t). The driving force behind diffusion fluxes lies in the chemical potential difference across the
interface between two phases, denoted by µ. Thus, the expression for the diffusion flux can be written as [12]:

J⃗ = −D∇⃗µ,

where D is the transport coefficient. If we assume that only one length scale L(t) is relevant at long times, we can estimate
∇⃗µ ∼ ∆µ/L, where ∆µ represents the change in µ across the interface. Near coexistence, the free energy difference between two
phases scales as ∆f ∼ φ∆µ, where φ denotes the magnitude of the order parameter in either of the phases at coexistence. The
energy of a droplet in 2D with radius L(t), given byHdrop(L(t)) = −π∆fL(t)2+2πσL(t), reaches its maximum at the critical radius
L ∼ σ/∆f , where σ stands for the energy cost to create an interface between two phases.

Subsequently, we replace the value of the free energy difference at the interface ∆f ∼ φ∆µ, leading to the relation L ∼ σ/∆f ∼
σ/(φ∆µ). Hence, we can estimate the diffusion fluxes as J ∼ D∆µ/L ∼ (Dσ/φ)/L2. Since the flux J ∼ φ dL(t)

dt
, we obtain that the

droplet radius grows according to the following equation:

dL(t)

dt
∼ Dσ

φ2

1

L2
.

Given that φ, σ, and D are constants, this leads to the growth law L(t) ∼ t1/3.
In our simulations, we can compute the domain length from the structure factor as defined below [11]:

L(t) =

∫︁ qcut
2π/Lbox

S(q, t)dq∫︁ qcut
2π/Lbox

qS(q, t)dq
, (14)

where Lbox represents the length of the simulation box. Since the Cahn-Hilliard model is a continuum model, we do not set an
upper limit qcut which would be necessary for particle-based simulations. This exponent of the growth rate can be extracted from the
domain length by fitting a power law to the domain length at long timescales. Notably, we obtain α ≈ 1/3 [13], only at very long
times and for large simulations [14, 15].

4 Numerical Analysis

4.1 Simulations

The numerical analysis of the Cahn-Hilliard equation can be done by the computationally very efficient pseudo-spectral method in
combination with the implicit-explicit (IMEX) scheme.

By Fourier transforming the Cahn-Hilliard equation, we can transform derivatives to simple multiplications:

∂φ̃(k⃗, t)

∂t
= M

[︂
−ak⃗

2
φ̃(k⃗, t)− bk⃗

2
φ̃(k⃗, t)3 − κk⃗

4
φ̃(k⃗, t)

]︂
, (15)
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where φ̃(k⃗, t) = 1
2π

∫︁
φ(x⃗, t)e−2πik⃗·x⃗dx⃗ is the Fourier-transformed φ(x⃗, t).

To solve the Cahn-Hilliard equation in the form of Eq. (15), we can apply the IMEX schemeby splitting the equation into two
different parts, the linear part F with the terms ∝ φ̃ and the non-linear part G with the cubic term ∝ φ̃

3.

φ̃(k⃗, t+∆t) = F (φ̃, t+∆t) +G(φ̃
3
, t)

The two parts can then be computed appropriately with the commonly known forward (explicit) Euler method or the backward
(implicit) Euler method.

The forward Euler method is also called explicit method since the next time step is calculated explicitly from the previous one. In
the case of the Cahn-Hilliard equation, we analyze the cubic term M

[︂
−bk⃗

2
φ̃(k⃗, t)3

]︂
with the explicit method. We treat the linear

part M
[︂
−ak⃗

2
φ̃(k⃗, t)− κk⃗

4
φ̃(k⃗, t)

]︂
with the implicit method.

Putting everything together, we get for the next timestep

φ̃(k⃗, t+∆t) = φ̃(k⃗, t) + ∆t ·M
[︂
−ak⃗

2
φ̃(k⃗, t+∆t)− κk⃗

4
φ̃(k⃗, t+∆t)

]︂
+∆t ·M

[︂
−bk⃗

2
φ̃(k⃗, t)3

]︂
,

which we can rewrite as

φ̃(k⃗, t+∆t) =

φ̃(k⃗,t)
∆t

+M
[︂
−bk⃗

2
φ̃(k⃗, t)3

]︂
1
∆t

−M
[︂
−ak⃗

2
− κk⃗

4
]︂ .

Using the dimensionless form, Eq. (7), we get

φ̃(k⃗, t+∆t) =

φ̃(k⃗,t)
∆t

+
[︂
−k⃗

2
φ̃(k⃗, t)3

]︂
1
∆t

−
[︂
−αk⃗

2
− k⃗

4
]︂ ,

with α = a/b.

4.2 Data Analysis Using AMEP

To analyze the simulation data, the Active Matter Evaluation Package (AMEP) Python library is used. It provides a unified framework
to load, store, and analyze data from particle-based and continuum simulations and provides access to common observables relevant
to active matter systems with an easy-to-use Python API. In this subsection, we will briefly explain how to install AMEP and how to
analyze continuum simulation data with AMEP. A detailed documentation is available at https://amepproject.de.

4.2.1 Installation

AMEP can simply be installed using pip or conda. It is recommended to create a new Python environment first and then install
AMEP within the new environment either via pip install amep or conda install conda-forge::amep. AMEP can then
simply be imported in Python:

1 import amep

4.2.2 Loading and accessing simulation data

Assuming that the continuum simulation data is stored in the directory ”/data/sim”, AMEP allows to load the data using the function
amep.load.traj:

2 t r a j = amep . load . t r a j ( ”/data/sim” , mode=” f i e l d ” )

This creates a FieldTrajectory object that consists of multiple frames. A single frame can be accessed by its index, e.g., frame = traj[5]
returns the frame with index 5. The frame gives access to the simulation data at one time step. The corresponding time can be
returned via frame.time, the time step via frame.step. The discretized grid can be returned via frame.grid and the corresponding values
of the continuum field(s) via frame.data(key), where key must be an available data key. Available keys can be returned as a list via
frame.keys. All data is returned as NumPy arrays and can therefore simply be used for further processing. The following example
briefly demonstrates the standard workflow of AMEP.
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4.2.3 Example

In this basic example, we calculate the density distribution of field ”phi”, save the analysis results in a file, and finally plot the results.
We assume that the data is already loaded as demonstrated above. We use the amep.evaluate.LDdist class, which calculates the
time-averaged density distribution over a certain range of the trajectory:

3 # calcu la te the density d i s t r ibut ion
4 ldd = amep . evaluate . LDdist ( tra j , skip=0 . 9 , nav=10 , pbc=True)

Here, we skip a fraction 0.9 of the trajectory at its beginning (skip=0.9) to only use frames in the steady state. The results are averaged
over 10 frames (nav=10) of the last 10 % of the trajectory. Furthermore, we consider periodic boundary conditions (pbc=True). Next,
we save the results:

5 # save r e s u l t s in HDF5 f i l e
6 ldd . save ( ” r e s u l t s . h5” )

They can later be loaded again using ldd = amep.load.evaluation(”results.h5”) for further post processing. Finally, we use AMEP’s plot
module to visualize the results:

7 # create a new f i gure
8 f i g , axs = amep . plot . new()
9

10 # plot the r e s u l t s
11 axs . plot ( ldd . ld , ldd . avg)
12

13 # set axis l a b e l s
14 axs . set_xlabel ( r ”$\phi$” )
15 axs . set_ylabel ( r ”$p(\ phi )$” )
16

17 # save the f i gure
18 f i g . save f i g ( ” r e s u l t s . png” )

Note that AMEP is using Matplotlib in the background. A detailed description of AMEP can be found in its online documentation
available at https://amepproject.de.

5 Tasks

To investigate the Cahn-Hilliard equation and the phase separation, you will do some analytical as well as numerical investigations.
Please prepare the tasks marked with an asterisk at home. For the analytical investigations, please prepare the following tasks:

1. * What are the trivial solutions of the steady state solution Cahn-Hilliard equation? Show that in one dimension the interface
between the phases in the fully separated case (φ(±∞) = ±φ0 = ±

√︁
−a/b) is given by

φ(x) =

√︃
−a

b
tanh

(︃√︃
− a

2κ
x

)︃
. (16)

2. * Perform a linear stability analysis around the uniform state. Predict the spinodal and give the regime where the system phase
separates. Plot the state diagram.

3. * Predict the parameter regime of the binodal by using the free energy functional. Plot the full state diagram from the analytical
results including the previous results.

To investigate the spatial and dynamical behaviour of the Cahn-Hilliard equation numerically, we will now do simulations:

4. Set up your simulations with the supplied code.
• To determine the proper timestep, check for the conservation of the total density.
• Which of the values of timestep, system size and simulation duration can be necessary to vary for different parameter

regimes?

5. Investigate the shape of the interface with numerical simulations by checking the scaling behaviour with Eq. (16) for different
a and κ. To do so, use an appropriate regime.

6. Check your prediction of the linear stability analysis for the spinodal with numerical simulation and generate a state diagram
with the help of numerical simulations. Do the results agree with the predictions? If not, why?

7. To check your results numerically, create a system in the parameter regime you predicted with a nucleation seed placed inside.
What do you see? Does the size/density of the nucleation seed matter? Can you also see the stable (uniformly mixed) regime?

8. Determine the growth exponent for a large system with an initial mean concentration of 0 (equal constitution) in the phase
separating regime.
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